Search results for "Myosin Light Chains"
showing 6 items of 6 documents
Isolation and characterization of Wnt pathway-related genes from Porifera.
2006
The Wnt signal acts by binding to Frizzled receptors, with the subsequent activation of two different signal transduction cascades, the canonical and the non-canonical Wnt pathways, involved in cell growth, differentiation, migration and fate. The canonical pathway functions through the translocation of beta-catenin to the nucleus and the activation of TCF/LEF transcription factors; it plays an important role in developmental patterning and cell fate decisions during embryogenesis. The non-canonical Wnt pathway is responsible for the planar cell polarity process in invertebrates, and for the convergent-extension movements during vertebrate gastrulation. The final effect of the non-canonical…
Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro.
2008
Abstract Glutamate is an important excitatory amino acid in the central nervous system. Under pathological conditions glutamate levels dramatically increase. Aim of the present study was to examine whether the HMG-CoA inhibitor fluvastatin prevents glutamate-induced blood-brain-barrier (BBB) disruption. Measurements of transendothelial electrical resistance (TEER) were performed to analyze BBB integrity in an in vitro co-culture model of brain endothelial and glial cells. Myosin light chain (MLC) phosphorylation was detected by immunohistochemistry, or using the in-cell western technique. Intracellular Ca 2+ and reactive oxygen species (ROS) levels were analyzed using the fluorescence dyes …
Fluvastatin stabilizes the blood–brain barrier in vitro by nitric oxide-dependent dephosphorylation of myosin light chains
2006
Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme-A reductase and the downstream mevalonate pathway is in part responsible for the beneficial effects that statins exert on the cardiovascular system. In this study we aimed at analysing the stabilizing effects of fluvastatin on the blood-brain barrier (BBB) integrity, using an in vitro co-culture model of ECV304 and C6, or primary bovine endothelial cells and rat astrocytes. Fluvastatin dose-dependently (1-25 micromol/l) increased barrier integrity as analysed by measurements of transendothelial electrical resistance (TEER). This effect (117.4+/-2.6% at 25 micromol/l) was significantly reduced by the nitric oxide (NO) synthase inhibitor L…
Mechanisms of C-reactive protein-induced blood-brain barrier disruption.
2009
Background and Purpose— Increased mortality after stroke is associated with brain edema formation and high plasma levels of the acute phase reactant C-reactive protein (CRP). The aim of this study was to examine whether CRP directly affects blood–brain barrier stability and to analyze the underlying signaling pathways. Methods— We used a cell coculture model of the blood–brain barrier and the guinea pig isolated whole brain preparation. Results— We could show that CRP at clinically relevant concentrations (10 to 20 μg/mL) causes a disruption of the blood–brain barrier in both approaches. The results of our study further demonstrate CRP-induced activation of surface Fcγ receptors CD16/32 fo…
Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury.
2010
The role of the endothelial contractile apparatus in the process of brain edema formation after brain trauma is not characterized. Phosphorylation of myosin light chains by myosin light chain kinases (MLCK) activates endothelial contractile elements and results in a rearrangement of the cytoskeleton. This may enhance post-traumatic blood-brain barrier dysfunction. In order to investigate the role of the MLCK on brain edema formation and blood-brain barrier permeability after brain injury, mice were anesthetized and subjected to a controlled cortical impact (CCI). MLCK expression is significantly up-regulated after CCI with a maximum 12 h post-injury. Specific inhibition of MLCK by ML-7 resu…
Fine-Tuning of Platelet Responses by Serine/Threonine Protein Kinases and Phosphatases-Just the Beginning.
2021
AbstractComprehensive proteomic analyses of human and murine platelets established an extraordinary intracellular repertoire of signaling components, which control crucial functions. The spectrum of platelet serine/threonine protein kinases (more than 100) includes the AGC family (protein kinase A, G, C [PKA, PKG, PKC]), the mitogen-activated protein kinases (MAPKs), and others. PKA and PKG have multiple significantly overlapping substrates in human platelets, which possibly affect functions with clear “signaling nodes” of regulation by multiple protein kinases/phosphatases. Signaling nodes are intracellular Ca2+ stores, the contractile system (myosin light chains), and other signaling comp…